22,809 research outputs found

    The anomaly-induced effective action and natural inflation

    Full text link
    The anomaly-induced inflation (modified Starobinsky model) is based on the application of the effective quantum field theory approach to the Early Universe. We present a brief general review of the model and show that it does not require a fine-tuning for the parameters of the theory or initial data, gives a real chance to meet a graceful exit to the FRW phase and also has positive features with respect to the metric perturbations.Comment: Invited talk at the International Workshop on Astroparticle and High Energy Physics, October 14 - 18, 2003, Valencia, Spai

    Two-mode heterodyne phase detection

    Get PDF
    We present an experimental scheme that achieves ideal phase detection on a two-mode field. The two modes aa and bb are the signal and image band modes of an heterodyne detector, with the field approaching an eigenstate of the photocurrent Z^=a+b\hat{Z}=a+b^{\dag}. The field is obtained by means of a high-gain phase-insensitive amplifier followed by a high-transmissivity beam-splitter with a strong local oscillator at the frequency of one of the two modes.Comment: 3 pages, 1 figur

    An Ontology-based Image Repository for a Biomedical Research Lab

    Get PDF
    We have developed a prototype web-based database for managing images acquired during experiments in a biomedical research lab studying the factors controlling cataract development. Based on an evolving ontology we are developing for describing the experimental data and protocols used in the lab, the image repository allows lab members to organize image data by multiple attributes. The use of an ontology for developing this and other tools will facilitate intercommunication among tools, and eventual data sharing with other researchers

    Perturbations in the relaxation mechanism for a large cosmological constant

    Full text link
    Recently, a mechanism for relaxing a large cosmological constant (CC) has been proposed [arxiv:0902.2215], which permits solutions with low Hubble rates at late times without fine-tuning. The setup is implemented in the LXCDM framework, and we found a reasonable cosmological background evolution similar to the LCDM model with a fine-tuned CC. In this work we analyse analytically the perturbations in this relaxation model, and we show that their evolution is also similar to the LCDM model, especially in the matter era. Some tracking properties of the vacuum energy are discussed, too.Comment: 18 pages, LaTeX; discussion improved, accepted by CQ

    Shape-dependent Depinning of a Domain Wall by a Magnetic Field and a Spin-Polarized Current

    Full text link
    The effect of sample shape on the depinning of the domain wall (DW) driven by an applied magnetic field or a spin-polarized current is studied theoretically. The shape effect resulting from the modulation of the sample width (geometric pinning) can essentially affect the DW depinning. We found a good agreement between the ratios of the critical values of the magnetic field and the spin-polarized current predicted by the theory and measured in the experiment.Comment: 9 pages, 5 figure

    Io's radar properties

    Get PDF
    Arecibo 13 cm wavelength radar observations during 1987-90 have yielded echoes from Io on each of 11 dates. Whereas Voyager imaged parts of the satellite at resolutions of several km and various visible/infrared measurements have probed the surfaces's microscale properties, the radar data yield new information about the nature of the surface at cm to km scales. Our observations provide fairly thorough coverage and reveal significant heterogeneity in Io's radar properties. A figure is given showing sums of echo spectra from 11 dates

    The Born and Lens-Lens Corrections to Weak Gravitational Lensing Angular Power Spectra

    Full text link
    We revisit the estimation of higher order corrections to the angular power spectra of weak gravitational lensing. Extending a previous calculation of Cooray and Hu, we find two additional terms to the fourth order in potential perturbations of large-scale structure corresponding to corrections associated with the Born approximation and the neglect of line-of-sight coupling of two foreground lenses in the standard first order result. These terms alter the convergence (κκ\kappa\kappa), the lensing shear E-mode (ϵϵ\epsilon\epsilon), and their cross-correlation (κϵ\kappa\epsilon) power spectra on large angular scales, but leave the power spectra of the lensing shear B-mode (ββ\beta\beta) and rotational (ωω\omega\omega) component unchanged as compared to previous estimates. The new terms complete the calculation of corrections to weak lensing angular power spectra associated with both the Born approximation and the lens-lens coupling to an order in which the contributions are most significant. Taking these features together, we find that these corrections are unimportant for any weak lensing survey, including for a full sky survey limited by cosmic variance.Comment: Added references, minor changes to text. 9 pages, 2 figure

    Cosmology with variable parameters and effective equation of state for Dark Energy

    Full text link
    A cosmological constant, Lambda, is the most natural candidate to explain the origin of the dark energy (DE) component in the Universe. However, due to experimental evidence that the equation of state (EOS) of the DE could be evolving with time/redshift (including the possibility that it might behave phantom-like near our time) has led theorists to emphasize that there might be a dynamical field (or some suitable combination of them) that could explain the behavior of the DE. While this is of course one possibility, here we show that there is no imperative need to invoke such dynamical fields and that a variable cosmological constant (including perhaps a variable Newton's constant too) may account in a natural way for all these features.Comment: LaTeX, 9 pages, 1 figure. Talk given at the 7th Intern. Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05

    On general features of warm dark matter with reduced relativistic gas

    Full text link
    Reduced Relativistic Gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the J\"{u}ttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational exponents for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity vv for dark matter particles which is parameterized by the warmness parameter bb. The relatively high values of bb ( b2106b^2\gtrsim 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of 1%\lesssim 1\%. A warmness with b2106b^2\lesssim 10^{-6} (equivalent to v300km/sv\lesssim 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.Comment: 15 pages, 8 figures. Essential improvements in style and presentatio
    corecore